Exemples de sujets posés à l'oral 2021

Sujet 1

Exercice 1

Pour tout $n \in \mathbb{N}$, on pose

$$I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)(1+x^n)} \quad \text{et} \quad J_n = \int_0^{+\infty} \frac{x^n \, \mathrm{d}x}{(1+x^2)(1+x^n)}$$

- 1. Justifier, pour tout $n \in \mathbb{N}$, la convergence des intégrales I_n et J_n .
- 2. Calculer, pour tout $n \in \mathbb{N}$, la somme $I_n + J_n$.
- 3. Au moyen du changement de variable u=1/x, calculer, pour tout $n \in \mathbb{N}$, les intégrales I_n et J_n .
- 4. La suite $\left(\int_0^1 \frac{x^n dx}{(1+x^2)(1+x^n)}\right)_{n\in\mathbb{N}}$ est-elle convergente? La série $\sum \int_0^1 \frac{x^n dx}{(1+x^2)(1+x^n)}$ est-elle convergente?

Exercice 2

On dispose d'un dé équilibré à 6 faces et d'une pièce truquée telle que la probabilité d'apparition de « pile » soit égale à $p \in]0,1[$. On note q=1-p.

Soit N un entier naturel non nul. On effectue N lancers du dé; si n est le nombre de « 6 » obtenus, on lance alors n fois la pièce.

On définit les trois variables X, Y, Z de la manière suivante :

- Z indique le nombre de « 6 » obtenus aux lancers du dé
- X indique le nombre de « piles » obtenus aux lancers de la pièce
- Y indique le nombre de « faces » obtenus aux lancers de la pièce.

Ainsi, on a X + Y = Z.

1. Pour tout $k \in \{0, ..., N\}$, pour tout $n \in \{0, ..., N\}$, déterminer la probabilité conditionnelle $\mathbb{P}(X = k \mid Z = n)$ (sans calcul).

En déduire, pour tout couple $(k, n) \in \{0, ..., N\}^2$, la valeur de la probabilité $\mathbb{P}([X = k] \cap [Z = n])$.

2. Montrer, pour tout couple (k, n) d'entiers naturels vérifiant $0 \le k \le n \le N$, l'identité :

$$\binom{n}{k}\binom{N}{n} = \binom{N}{k}\binom{N-k}{n-k}.$$

- 3. Démontrer que la variable aléatoire X suit la loi binomiale de paramètres N et p/6.
- 4. Les variables X et Y sont-elles indépendantes?

Sujet 2

Exercice 1

 $(\Omega, \mathscr{A}, \mathbb{P})$ désigne un espace probabilisé sur lequel seront définies les différentes variables aléatoires. On notera $\mathbb{P}[A]$ la probabilité d'un évènement $A \in \mathscr{A}$ et $\mathbb{E}[X]$ l'espérance d'une variable aléatoire X sur $(\Omega, \mathscr{A}, \mathbb{P})$ à valeurs réelles.

Soit $n \ge 1$ un entier naturel et soient X_1, \dots, X_n des variables aléatoires réelles discrètes mutuellement indépendantes telles que, pour tout $k \in \{1, \dots, n\}$,

$$\mathbb{P}[X_k = 1] = \mathbb{P}[X_k = -1] = \frac{1}{2}$$

On définit

$$S_n = \frac{1}{n} \sum_{k=1}^n X_k.$$

1. Soit Z une variable aléatoire discrète telle que $\exp(\alpha Z)$ est d'espérance finie pour tout $\alpha > 0$. Montrer que pour tout $\alpha > 0$ et $t \in \mathbb{R}$,

$$\mathbb{P}[Z \ge t] \le e^{-\alpha t} \mathbb{E}[\exp(\alpha Z)].$$

2. Montrer que, pour tout $t \in [-1, 1]$ et tout $\lambda > 0$,

$$\frac{1}{n}\ln \mathbb{P}[S_n \ge t] \le \ln(\mathbb{E}[e^{\lambda X_1}]) - \lambda t.$$

3. Montrer que pour tout $\lambda \in \mathbb{R}$, $\frac{e^{\lambda} + e^{-\lambda}}{2} \le e^{\frac{\lambda^2}{2}}$.

4. En déduire que pour tout $t \in [-1, 1]$,

$$\frac{1}{n}\ln \mathbb{P}[S_n \ge t] \le -\frac{t^2}{2}$$

Exercice 2

1. Etudier la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_0\in[-\frac{1}{2},\frac{1}{2}]$ et pour tout $n\geq 0$, $x_{n+1}=x_n^2+\frac{1}{4}$.

2. Déterminer l'ensemble des fonctions f de $\left[-\frac{1}{2},\frac{1}{2}\right]$ dans $\left[-\frac{1}{2},\frac{1}{2}\right]$, continues sur $\left[-\frac{1}{2},\frac{1}{2}\right]$ et telles que :

$$\forall x \in \left[-\frac{1}{2}, \frac{1}{2} \right], \ f(x) = f\left(x^2 + \frac{1}{4}\right).$$

3. Déterminer l'ensemble des fonctions f de $\mathbb R$ dans $\mathbb R$, continues sur $\mathbb R$ et telles que :

$$\forall x \in \mathbb{R}, \ f(x) = f\left(x^2 + \frac{1}{4}\right).$$