Mathématiques Planche N°A05

Ce sujet est composé de deux exercices.

Le candidat doit les traiter tous les deux puis les exposer dans l'ordre de son choix.

Exercice 1

On considère une suite $(X_k)_{k\geqslant 1}$ de variables indépendantes positives sur l'espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ telles que pour tout $k\in\mathbb{N}^*$, $E(X_k^2)=1$. On pose, pour tout $n\geqslant 1$, $Y_n=\prod_{k=1}^n X_k$.

- 1. (a) Démontrer que $E(X_k)$ existe et vérifie $E(X_k) \leq 1$ puis que $E(Y_n)$ existe et vérifie $E(Y_n) \leq 1$.
 - (b) Montrer que la suite de terme général $E(Y_n)$ est convergente.
- 2. On suppose que $\lim_{n\to+\infty} E(Y_n)=0$. Montrer que $(Y_n)_{n\geqslant 1}$ converge en probabilité vers 0.
- 3. Soient X et Y deux variables aléatoires admettant des moments d'ordre 2 avec $E(Y^2) \neq 0$.
 - (a) Justifier, pour tout $x \in \mathbb{R}$, l'égalité $E((X+xY)^2) = E(X^2) + 2xE(XY) + x^2E(Y^2)$.
 - (b) A l'aide du signe du trinôme $E((X+xY)^2)$, montrer que $(2E(XY))^2-4E(X^2)E(Y^2)\leqslant 0$ d'où $|E(XY)|\leqslant \sqrt{E(X^2)E(Y^2)}$.
- 4. On suppose que $(Y_n)_{n\geq 1}$ converge en probabilité vers 0.
 - (a) Établir que pour tout a > 0, $Y_n \leq Y_n \mathbf{1}_{[Y_n \geqslant a]} + a$.
 - (b) En déduire que $\lim_{n\to+\infty} E(Y_n) = 0$.

Exercice 2

Soit $n \in \mathbb{N}^*$, on définit l'application u sur $\mathbb{R}_n[x]$ par,

$$\forall P \in \mathbb{R}_n[x], u(P)(x) = xP(x+1) - (x-1)P(x)$$

- 1. Montrer que u est un endomorphisme de $\mathbb{R}_n[x]$.
- 2. (a) Déterminer les valeurs propres de u, justifier que u est diagonalisable et préciser la dimension des sous-espaces propres de u.
 - (b) Soit $E_1(u)$ le sous-espace propre de u associé à la valeur propre 1. Montrer que $E_1(u) = \{P \in \mathbb{R}_n[x]/P(x+1) = P(x)\}$ et que $E_1(u) = \mathbb{R}_0[x]$.
- 3. Soit P un polynôme tel que u(P)(x) = (k+1)P(x) où $k \in [|1,n|]$.
 - (a) Montrer que pour tout $i \in [0, k-1], -i$ est une racine de P.
 - (b) On pose $T_k(x) = \prod_{i=0}^{k-1} (x+i)$. En déduire qu'il existe $Q \in \mathbb{R}_n[x]$ tel que $P(x) = T_k(x)Q(x)$.
 - (c) Etablir que Q(x+1) = Q(x). En déduire que $P \in \text{Vect}(T_k(x))$. Conclure.